Menu Sidebar Widget Area

This is an example widget to show how the Menu Sidebar Widget Area looks by default. You can add custom widgets from the widgets in the admin.

A 55 kg Bungee Jumper Has Fallen Far Enough

Introduction

A bungee jumper with a mass of 55 kg has fallen far enough that the bungee cord is now fully stretched. The cord has a spring constant of 120 N/m.

What is the jumper’s speed just before he begins to rebound?

Solution

The gravitational potential energy of the jumper at the top of the fall is:

$$PE_g = mgh$$

where:

* $m$ is the jumper’s mass (55 kg)
* $g$ is the acceleration due to gravity (9.8 m/s2)
* $h$ is the height of the fall

We don’t know the height of the fall, but we can use the fact that the bungee cord is now fully stretched to find it. The elastic potential energy stored in the cord is:

$$PE_e = frac{1}{2}kx^2$$

where:

* $k$ is the spring constant of the cord (120 N/m)
* $x$ is the stretch of the cord

The stretch of the cord is equal to the height of the fall, so we have:

$$PE_e = frac{1}{2}kh^2$$

The total mechanical energy of the jumper is conserved, so we have:

$$PE_g = PE_e$$

Substituting the expressions for $PE_g$ and $PE_e$, we get:

$$mgh = frac{1}{2}kh^2$$

Solving for $h$, we get:

$$h = sqrt{frac{2mgh}{k}}$$

Substituting the given values, we get:

$$h = sqrt{frac{2(55 text{ kg})(9.8 text{ m/s}^2)(h)}{120 text{ N/m}}}$$

$$h = 22.4 text{ m}$$

Now that we know the height of the fall, we can find the jumper’s speed just before he begins to rebound using the conservation of energy:

$$PE_g = KE$$

where $KE$ is the jumper’s kinetic energy. Substituting the expressions for $PE_g$ and $KE$, we get:

$$mgh = frac{1}{2}mv^2$$

Solving for $v$, we get:

$$v = sqrt{2gh}$$

Substituting the given values, we get:

$$v = sqrt{2(9.8 text{ m/s}^2)(22.4 text{ m})}$$

**Therefore, the jumper’s speed just before he begins to rebound is 20.4 m/s.**

Read Post  My First Bungee Jump in Michigan

Leave a Reply

Your email address will not be published. Required fields are marked *